Effect of the Nutrient Concentrate in Ration on Performance of Local Chickens

##plugins.themes.bootstrap3.article.main##

Efforts towards improving the quality of shrimp waste are through bioprocess using Bacillus licheniformis service, Lactobacillus sp., and Saccharomyces cerevisiae to obtain a quality product (Nutrient Concentrate) to meet the needs of local chicken's nutrition. The study's objective was to obtain an adequate level of use of Nutrient Concentrate in the local chicken ration during the growth phase. Research using the experimental method in the laboratory. The experimental design used was a complete randomized design, consisting of 6 treatment rations (R0 = low protein ration (15%), R1 = Ration containing 5% concentrated nutrient, R2 = Ration containing 10% concentrate nutrient R3 = Ration containing 15% nutrient Concentrate R4 = Ration contains 20% concentrate nutrient, and RS = high protein ration (18%) and each is repeated 5 times. The data were analysed by variance, and the differences between treatments were tested by Duncan's multiple range test. The results of the research were: (1) The best growth of local chickens (consumption of ration, weight gain, and ration efficiency) was given by ration containing 10% concentrate nutrient (15% ration protein) and the equivalent of high protein ration (protein ration 18 %), and (2) Nutrient concentrates can be used up to 20% in a local chicken ration of growth phase without affecting chicken health (erythrocytes = 1.87-2.20 × 106, leukocytes = 29.08-37,72 × 103, and haematocrit = 30.80-33.80%).

  1. Abdel-Tawwab, M., Ahmad, M. H., Khattab, Y. A. E., & Shalaby, A. M. E. (2010). Effect of dietary protein level, initial body weight, and their interaction on the growth, feed utilization, and physiological alterations of Nile tilapia, Oreochromis niloticus (L.). Aquaculture. 298(3–4), 267–274. doi: 10.1016/j.aquaculture.2009.10.027.  |   Google Scholar
  2. Abun, A., Darana, S., Tanwiriah, W., Indrijani, H., Asmara, I. Y., & Taslim, T. (2018). Influence of different energy-proteins on performance and blood hematological on three types of local chicken. Int. J. Environ. Agric. Biotechnol. 3(5), 1816–1824. doi: 10.22161/ijeab/3.5.33.  |   Google Scholar
  3. Abun, T., Widjastuti, K., Haetami, D., Rusmana, & Jhondri (2007). Nutrient concentrate fermentation based shrimp waste and effect on production performance phase layer native chicken. Sci. Pap. D-Animal Sci. 60, 55–60.  |   Google Scholar
  4. Abun, A., Saefulhadjar, D., Widjastuti, T., Haetami, K., & Wiradimadja, R. (2017). Energy-protein-consentrate as product of glucosamine extract from shrimp waste on performance ofnative chicken. Int. J. Environ. Agric. Biotechnol. 2(3), 1341–1346. doi: 10.22161/ijeab/2.3.41.  |   Google Scholar
  5. Alshelmani, M. I., Loh, T. C., Foo, H. L., Sazili, A. Q., & Lau, W. H. (2017). Effect of feeding different levels of palm kernel cake fermented by Paenibacillus polymyxa ATCC 842 on broiler growth performance, blood biochemistry, carcass characteristics, and meat quality. Anim. Prod. Sci. 57(5), 839–848. doi: 10.1071/AN15359.  |   Google Scholar
  6. Arif, M., et al. (2020). The biodegradation role of Saccharomyces cerevisiae against harmful effects of mycotoxin contaminated diets on broiler performance, immunity status, and carcass characteristics. Animals, 10(2). doi: 10.3390/ani10020238.  |   Google Scholar
  7. Ayad, A. A., Gad El-Rab, D. A., Ibrahim, S. A., & Williams, L. L. (2020). Nitrogen sources effect on lactobacillus reuteri growth and performance cultivated in date palm (Phoenix dactylifera L.) By-products. Fermentation, 6(3), 2–11. doi: 10.3390/FERMENTATION6030064.  |   Google Scholar
  8. Azzam, M. M., et al. (2019). Effect of soybean isoflavones on growth performance, immune function, and viral protein 5 mrna expression in broiler chickens challenged with infectious bursal disease virus. Animals, 9(5). doi: 10.3390/ani9050247.  |   Google Scholar
  9. Chuang, W. Y., Lin, W. C., Hsieh, Y. C., Huang, C. M., Chang, S. C., & Lee, T. T. (2019). Evaluation of the combined use of Saccharomyces cerevisiae and Aspergillus oryzae with phytase fermentation products on growth, inflammatory, and intestinal morphology in broilers. Animals, 9(12), 1–16. doi: 10.3390/ani9121051.  |   Google Scholar
  10. Day, O. J., & Plascencia González, H. G., (2000). Soybean protein concentrate as a protein source for turbot Scophthalmus maximus L. Aquac. Nutr., 6(4), 221–228. doi: 10.1046/j.1365-2095.2000.00147.x.  |   Google Scholar
  11. Ghoreyshi, S. M., et al. (2019). Effects of dietary supplementation of l-carnitine and excess lysine-methionine on growth performance, carcass characteristics, and immunity markers of broiler chicken. Animals, 9(6), 1–17. doi: 10.3390/ani9060362.  |   Google Scholar
  12. Haddar, A., Hmidet, N., Ghorbel-Bellaaj, O., Fakhfakh-Zouari, N., Sellami-Kamoun, A., & Nasri, M. (2011). Alkaline proteases produced by Bacillus licheniformis RP1 grown on shrimp wastes: Application in chitin extraction, chicken feather-degradation and as a dehairing agent. Biotechnol. Bioprocess Eng., 16(4), 669–678. doi: 10.1007/s12257-010-0410-7.  |   Google Scholar
  13. Haetami, K., Abun, A., & Mulyani, Y. (2018). Prebiotics (BAS) (Bacillus sp., Aspergillus n., and Sacharomyces c.) as feed supplement on nutrients and its effects on digestibility value of fish feed. Int. J. Environ. Agric. Biotechnol., 3(5), 1825–1830. doi: 10.22161/ijeab/3.5.34.  |   Google Scholar
  14. Hassan, F. A. M., Roushdy, E. M., Kishawy, A. T. Y., Zaglool, A. W., Tukur, H. A., & Saadeldin, I. M. (2019). Growth performance, antioxidant capacity, lipid-related transcript expression and the economics of broiler chickens fed different levels of Rutin. Animals, 9(1), 1–13. doi: 10.3390/ani9010007.  |   Google Scholar
  15. Higgins, S. E., et al, (2008). Evaluation of a Lactobacillus-based probiotic culture for the reduction of Salmonella enteritidis in neonatal broiler chicks. Poult. Sci., 87(1), 27–31. doi: 10.3382/ps.2007-00210.  |   Google Scholar
  16. Hosseini-Vashan, S. J., Safdari-Rostamabad, M., Piray, A. H., & Sarir, H. (2020). The growth performance, plasma biochemistry indices, immune system, antioxidant status, and intestinal morphology of heat-stressed broiler chickens fed grape (Vitis vinifera) pomace. Anim. Feed Sci. Technol., 259, 114343. doi: 10.1016/j.anifeedsci.2019.114343.  |   Google Scholar
  17. Husnaeni, H., Junaedi, J., & Ningsi, W. (2020). The Effect of fermentation feed combination with commercial feed on growth of super native chicken. Chalaza J. Anim. Husb., 4(2), 54–58. doi: 10.31327/chalaza.v4i2.1009.  |   Google Scholar
  18. Ju, S., et al. (2019). Isolation and optimal fermentation condition of the Bacillus subtilis Subsp. Natto strain wtc016 for nattokinase production. Fermentation, 5(4). doi: 10.3390/fermentation5040092.  |   Google Scholar
  19. Kawasaki, K., et al. (2019). Evaluation of black soldier fly (Hermetia illucens) larvae and pre-pupae raised on household organic waste, as potential ingredients for poultry feed. Animals, 9(3). doi: 10.3390/ani9030098.  |   Google Scholar
  20. Lin, X., et al. (2020). Effects of dietary iron level on growth performance, immune organ indices and meat quality in Chinese yellow broilers. Animals,10(4). doi: 10.3390/ani10040670.  |   Google Scholar
  21. Lin, K. H., & Yu, Y. H., (2020). Evaluation of bacillus licheniformis-fermented feed additive as an antibiotic substitute: Effect on the growth performance, diarrhea incidence, and cecal microbiota in weaning piglets. Animals, 10(9), 1–16. doi: 10.3390/ani10091649.  |   Google Scholar
  22. Liu, Y., et al. (2020). Chitin extraction from shrimp (Litopenaeus vannamei) shells by successive two-step fermentation with Lactobacillus rhamnoides and Bacillus amyloliquefaciens. Int. J. Biol. Macromol., 148, 424–433. doi: 10.1016/j.ijbiomac.2020.01.124.  |   Google Scholar
  23. Mahmoud, N. S., Ghaly, A. E., & Arab, F. (2007). Unconventional approach for demineralization of deproteinized crustacean shells for chitin production. Am. J. Biochem. Biotechnol., 3(1), 1–9. doi: 10.3844/ajbbsp.2007.1.9.  |   Google Scholar
  24. Mirzah, M., Montesqrit, Fitrah, E., & Choirul, A. (2020). Effect of the Substitution the Fish Meal with Shrimp Head Waste Fermented in Diet on Broiler Performance. IOP Conf. Ser. Earth Environ. Sci., 478(1). doi: 10.1088/1755-1315/478/1/012076.  |   Google Scholar
  25. Perdinan, A., Wahyuni, H. I., & Suthama, N. (2019). Body resistance and growth performance of broiler fed glucomannan extracted from Amorphophallus onchophyllus tuber. Trop. Anim. Sci. J., 42(1), 33–38. doi: 10.5398/tasj.2019.42.1.33.  |   Google Scholar
  26. Purba, S. S. A., Tafsin, M., Ginting, S. P., & Khairani, Y. (2018). The utilization of endopower β in commercial feed which contains palm kernel cake on performance of broiler chicken. IOP Conf. Ser. Earth Environ. Sci., 122(1). doi: 10.1088/1755-1315/122/1/012122.  |   Google Scholar
  27. Saleh, A. A., Paray, B. A., & Dawood, M. A. O. (2020). Olive cake meal and bacillus licheniformis impacted the growth performance, muscle fatty acid content, and health status of broiler chickens. Animals, 10(4). doi: 10.3390/ani10040695.  |   Google Scholar
  28. Schiavone, A., et al. (2019). Black soldier fly defatted meal as a dietary protein source for broiler chickens: Effects on carcass traits, breast meat quality and safety. Animal. 13(10), 2397–2405. doi: 10.1017/S1751731119000685.  |   Google Scholar
  29. Sese, B. T., Okepu, M., & George, O. S., (2013). Organ Weights, Carcass Characteristics and Blood Chemistry of Broiler Birds Fed Graded Levels of Mucuna Utilis Leave Meal. J. Vet. Adv., 3(4), 146. doi: 10.5455/jva.20130510062334.  |   Google Scholar
  30. Soares, K. R., et al. (2020). Protein diets for growing broilers created under a thermoneutral environment or heat stress. Anim. Feed Sci. Technol., 259, 114332. doi: 10.1016/j.anifeedsci.2019.114332.  |   Google Scholar
  31. Roncarati, A., Cappuccinelli, R., Meligrana, M. C. T., Anedda, R., Uzzau, S., & Melotti, P. (2019). Growing trial of gilthead sea bream (Sparus aurata) juveniles fed on chironomid meal as a partial substitution for fish meal. Animals, 9(4), 1–10. doi: 10.3390/ani9040144.  |   Google Scholar
  32. Wang, Y. et al. (2020). Potential effects of acidifier and amylase as substitutes for antibiotic on the growth performance, nutrient digestion and gut microbiota in yellow-feathered broilers. Animals, 10(10); 1–10. doi: 10.3390/ani10101858.  |   Google Scholar
  33. Widjastuti, T., Setiawan, I., Abun, Asmara, I. Y., & Balia, R. L. (2020). Application of mangosteen peel extract (Garcinia mangostana L) as feed additive in ration for performance production and egg quality of sentul chicken. Int. J. Adv. Sci. Eng. Inf. Technol., 10(2), 789–794. doi: 10.18517/ijaseit.10.2.10666.  |   Google Scholar
  34. Yi, Z., et al. (2018). Feed conversion ratio, residual feed intake and cholecystokinin type A receptor gene polymorphisms are associated with feed intake and average daily gain in a Chinese local chicken population. J. Anim. Sci. Biotechnol., 9(1), 1–9. doi: 10.1186/s40104-018-0261-1.  |   Google Scholar
  35. Yin, D., et al. (2019). Influence of starch sources and dietary protein levels on intestinal functionality and intestinal mucosal amino acids catabolism in broiler chickens. J. Anim. Sci. Biotechnol., 10(1), 1–15. doi: 10.1186/s40104-019-0334-9.  |   Google Scholar
  36. Yuan, Shi-bin (2012). Effects of dietary supplementation of chitosan on growth performance and immune index in ducks. African J. Biotechnol., 11(14), 3490–3495. doi: 10.5897/ajb11.1648.  |   Google Scholar
  37. Yadav S., & Jha, R. (2019). Strategies to modulate the intestinal microbiota and their effects on nutrient utilization, performance, and health of poultry. J. Anim. Sci. Biotechnol., 10(1), 1–11. doi: 10.1186/s40104-018-0310-9.  |   Google Scholar

How to Cite

Abun, A., Widjastuti, T., & Haetami, K. (2022). Effect of the Nutrient Concentrate in Ration on Performance of Local Chickens. European Journal of Zoology, 1(1), 1–4. https://doi.org/10.24018/ejzoo.2022.1.1.8

Search Panel

 Abun Abun
 Google Scholar |   EJZOOLOGY Journal

 Tuti Widjastuti
 Google Scholar |   EJZOOLOGY Journal

 Kiki Haetami
 Google Scholar |   EJZOOLOGY Journal